Animated Programming With Cells



* Double-acrostic crossword puzzle

* Physical simulation of a pendulum

*

Clinical drug trial management

*

RoboCup Soccer Simulation League



dependency recomputes the same value

* Dependencies exist only for other cells actually
(not lexically) consulted

* No dependencies are recorded for cells declared
constant (implicitly, by being initialized to
anything other than a cell)

* Ruled cells which happen not to consult another
cell are optimized away



+ Lazy evaluation

* Intelligent propagation to the logically minimum number of state points
* Cells for DEFSTRUCT on the way



program state is inconsistent

* QGuarantees all state affected by any program input
will be recomputed...

* ...In the right order.



Dependencies are identified automatically
+ ...and reliably, and dynamically.
* Propagation is handled automatically

* Discipline keeps users from breaking the paradigm, inadvertently or
otherwise.

* Declarations are deterministic, hence comprehensible and predictable.



* Instances arranged in a navigable workspace have access to any slot of
any other instance

* “on change” observer call-backs are generic functions dispatched on
the instance, the slot- name, new value and old value



* “Ephemeral” cell slots revert to an identity value after
propagating to support event-like data

* Delta cell slots are second-order, propagating if a
computed value 1s not the identity

* For normal cell slots, default “unchanged” test of EQL
can be overridden



* Drifters begin with a value and can be SETF'ed. Rules are taken as a
delta to be added (with “addition” user-definable).

* Cyclicals allow limited amount of two-way dependency

* Aggregates support composite structures in a single slot value



Cells of view instances watched persistent slots of DB instances

Dynamic slots of persistent instances reflected the state of persistent
slots of instances

Cells of view instances watched the population of persistent tables

Persistent slots watched other persistent slots and the population of
persistent tables



*

*

*

*

Two rules for each synapse

For efficiency: Do I propagate?
For expressiveness: What should I propagate?

Example: delta synapses return the change in the slot mediated, and
take an optional sensitivity parameter to reduce propagation



* Rules written 1n arbitrary HLL

* On-change callbacks written in arbitrary HLL

* (I'd say “Lisp” and “CLOS” but Cells has been ported to
Java, C++, and Python)



higher order parameterization
* Different instances of the same class have wildly different rules

* No need to be forever defining new classes (or to give up on OO
and write huge methods driven by literal values in slots



be expressed in one place, in one rule.

* Diagnostics could analyze run-time dependencies which actually arise



ThingLab
VisiCalc

Steele's 1984 thesis on constraint programming

The entire constraint logic programming domain
Access-oriented programming

Kaleidoscope, Garnet's KR, COSI, Cells
OpenLaszlo

Flapjax, functional reactive programming



waiting ten to fifteen years?”

Guy Steele, on prior art to his new constraint language.

Twenty-five years ago.



* Multi-way constraints

* Given: (eql a (+ b ¢)), now change “a”



unpredictable behavior of the constraint model: even small changes in a
program or the data can lead to a dramatic change in the performance. This
is because the process of performance debugging, designing and improving
constraint programs for a stable execution over a variety of input data, is
currently not well understood. Related to this problem is the long learning
curve that novices have experienced. While simple applications can be built
almost immediately, it can take a long time to become familiar with the full
power of a constraint system.”

Rossi, Francesca. “Constraint Logic Programming”
University of Padova, 1997.



