
It's Alive!
Animated Programming With Cells

Industrial Strength
Applied over eight years to a wide variety of applications

 Educational software
 Double-acrostic crossword puzzle
 Physical simulation of a pendulum
 Clinical drug trial management
 RoboCup Soccer Simulation League

Fast
As much effort has gone into performance as power

 Propagation stops when any calculated
dependency recomputes the same value

 Dependencies exist only for other cells actually
(not lexically) consulted

 No dependencies are recorded for cells declared
constant (implicitly, by being initialized to
anything other than a cell)

 Ruled cells which happen not to consult another
cell are optimized away

Faster

 Synapses can minimize recomputation
 eg. (> (^pressure (sensor self) (fSensitivity 10)
 Lazy evaluation
 Intelligent propagation to the logically minimum number of state points
 Cells for DEFSTRUCT on the way

Correct
Directly addresses program correctness

 Eliminates the entire class of bug in which internal
program state is inconsistent

 Guarantees all state affected by any program input
will be recomputed...

 ...in the right order.

Easy
The Prime Directive: Productivity

 Dependencies are identified automatically
 ...and reliably, and dynamically.
 Propagation is handled automatically
 Discipline keeps users from breaking the paradigm, inadvertently or

otherwise.
 Declarations are deterministic, hence comprehensible and predictable.

Expressive
No limit on the semantics associated with a cell.

 Model population is itself mediated by cells
 Instances arranged in a navigable workspace have access to any slot of

any other instance
 “on change” observer call-backs are generic functions dispatched on

the instance, the slot- name, new value and old value

More Expressive
Varieties of underlying cell slot

 “Ephemeral” cell slots revert to an identity value after
propagating to support event-like data

 Delta cell slots are second-order, propagating if a
computed value is not the identity

 For normal cell slots, default “unchanged” test of EQL
can be overridden

More and More Expressive
Varieties of cells for same cell slot

 Drifters begin with a value and can be SETF'ed. Rules are taken as a
delta to be added (with “addition” user-definable).

 Cyclicals allow limited amount of two-way dependency
 Aggregates support composite structures in a single slot value

The Database: It's Alive!
Cells and a persistent CLOS database, happy together in a

GUI workgroup app maintaining a document database.

 Cells of view instances watched persistent slots of DB instances
 Dynamic slots of persistent instances reflected the state of persistent

slots of instances
 Cells of view instances watched the population of persistent tables
 Persistent slots watched other persistent slots and the population of

persistent tables

More, More, and More Expressive
User-definable Synapses mediate change propagation

 Two rules for each synapse
 For efficiency: Do I propagate?
 For expressiveness: What should I propagate?
 Example: delta synapses return the change in the slot mediated, and

take an optional sensitivity parameter to reduce propagation

Plays Well With Other (Code)
Seamlessly integrated with the HLL

 Works within HLL object model
 Rules written in arbitrary HLL
 On-change callbacks written in arbitrary HLL
 (I'd say “Lisp” and “CLOS” but Cells has been ported to

Java, C++, and Python)

Makes OO Work
Finally objects deliver on the promised Grail of re-use
 Functions do for slots what they did for function arguments:

higher order parameterization
 Different instances of the same class have wildly different rules
 No need to be forever defining new classes (or to give up on OO

and write huge methods driven by literal values in slots

Self-documenting
Makes explicit the dataflow implicit in inanimate paradigms

 Declarative model (and discipline) forces full semantics behind a slot to
be expressed in one place, in one rule.

 Diagnostics could analyze run-time dependencies which actually arise

The Lisp of Paradigms
Been around for a long time, used and loved by a happy few.

 SketchPad, 1963
 ThingLab
 VisiCalc
 Steele's 1984 thesis on constraint programming
 The entire constraint logic programming domain
 Access-oriented programming
 Kaleidoscope, Garnet's KR, COSI, Cells
 OpenLaszlo
 Flapjax, functional reactive programming

So What Went Wrong?
“Given that constraints were used as early as 1962,
why were not these ideas explored further, rather than
waiting ten to fifteen years?”

Guy Steele, on prior art to his new constraint language.

Twenty-five years ago.

A Bridge Too Far
Over-enthusiasm for an exciting technology

 Partial constraints: “less than 100"
 Multi-way constraints
 Given: (eql a (+ b c)), now change “a”

Stop. Wrong way. Go back.
“One common problem for users of the CLP systems in use is the sometimes
unpredictable behavior of the constraint model: even small changes in a
program or the data can lead to a dramatic change in the performance. This
is because the process of performance debugging, designing and improving
constraint programs for a stable execution over a variety of input data, is
currently not well understood. Related to this problem is the long learning
curve that novices have experienced. While simple applications can be built
almost immediately, it can take a long time to become familiar with the full
power of a constraint system.”

Rossi, Francesca. “Constraint Logic Programming”
 University of Padova, 1997.

